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1. OBJECTIVES

This report summarizes theoretical and experimental work on developing smart acoustic blankets for
increased transmission loss of sound into AF launch vehicle payload fairings under AFOSR Grant No:
F49620-99-1-0020. The investigation concentrates at the low frequencies (below 250Hz) where the
conventional passive blankets have proved to be ineffective [1]. The approach investigated at VAL consists
of a hybrid active-passive approach in which active elements are combined with the conventional passive
blanket treatment to improve its low frequency performance. The physical basis of the smart acoustic
blanket is also based upon the smart skin approach under development at VAL for the last five years
[2,3,4]. A smart skin is designed to cover the complete structure or extended regions of the structure
through which most of the acoustic power transmits. It functions by reducing the radiation impedance that
the structure sees (effectively de-couples the structural motion from the acoustic field) without having to
apply control forces directly to the structure itself [4]. The smart skin approach is thus very suitable for
very stiff structures such as a typical payload fairing.

The following report will summarize progress in investigating, developing and implementing a candidate
smart skin. Practical aspects of the approach will also be summarized followed by some suggestions for
future work.

2. STATUS OF EFFORT

The work carried out in this project has successfully demonstrated the potential of advanced smart acoustic
blankets for reducing sound transmitted into payload fairings. The smart blanket consists of active tiles
embedded in standard acoustic blanket material. The lightweight honeycomb tiles are supported by
specially developed active-passive piezoelectric mounts, which implement Thunder elements. The mounts
are designed to provide passive isolation of transmitted sound, which is augmented by the application of
active inputs in parallel to the mount. SISO uncoupled control approaches were developed in order to
facilitate the future use of multiple active tiles. Both feedforward and feedback control approaches applied
to a single tile located on a payload fairing like structure provided good reduction of broadband transmitted
sound. The feedback approach is especially attractive due to its low complexity and cost effectiveness of
hardware. An analytical model of the active tile system applied to a base structure has been developed and
used to optimally design the system.

3. ACCOMPLISHMENTS/NEW FINDINGS
3.1 Preliminary Investigations

Preliminary work in the project investigated various smart blanket concepts. These concepts were evaluated
for potential before the final design, which is discussed in detail below, was chosen. We briefly summarize
the preliminary work on alternative concepts.

The first concept was based around constructing a smart blanket from acoustic foam with embedded active
elements of the piezo polymer PVDF as shown in Figure 1. The smart blanket consists of a composite
construction of foam and honeycomb sheet. Active elements are located on the honeycomb sheet and/or
embedded in the foam.
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Figure 1. Composite smart blanket




A Finite Element model of the smart foam elements with embedded curved PVDF piezoelectric layers was
developed and tested. The numerical model was also extended to model the behavior of the experimental
rig described below. The numerical model was exercised to investigate and understand the physics of the
smart acoustic foam as well as optimally design smart foam elements for the test rig.

A 1D experimental rig was constructed for | testing of the smart foam elements. The rig consisted of a long
hard walled tube excited by a speaker at one end and anechoically terminated (i.e. no reflections) at the
other as shown in Figure 2. Smart foam test samples were located in the center of the tube. Typical samples
are presented in Figure 3.

Anechoic Termination i Loudspeaker

Test Sawf‘nple is
placed here

Smart Foam

Figure 3. Typical smart blanket samples.

The incident acoustic wave amplitude was measured in the upstream section using a two microphone
technique while a single microphone was located down stream of the test section. These measurements
enabled evaluation of the acoustic power transmission loss (TL) of various smart foam test samples under
normal acoustic incidence. A schematic of the test set up in instrumentation is given in Figure 4

Signal LMS Feedforward
Generator Controller Error Signal
Control Signal

Random 3

Noise Amplifier

Error sensor (mic)
Speaker — - —
L} Incident 7

Transmitted
Pressure Pressure
~]
7

Active Smart Foam  Double Panel
with PZT

Figure 4. Schematic of test set up and instrumentation




Two different electronic damping circuits were constructed and tested. The first was a conventional RL
circuit designed to resonate at the test frequency. The second circuit involved the use of a negative
capacitance to cancel the capacitance of the piezoelectric element and use a resistance to dissipate electrical
energy. These circuits were implemented on a circuit breadboard and used solid state inductances.

Various configurations of smart foam elements were constructed and tested in the TL rig in conjunction
with the electronic “damping” circuits discussed above. The main configurations tested were; (1) acoustic
foam with single and multiple layers of embedded PVDF. (2) acoustic foam with PVDF glued to the
surface. (3) acoustic foam with a thin metal layer glued to the surface of the foam. A small piezoceramic
element was glued to the metal plate and (4) the same as configuration 2. except that the plate was not
glued to the foam but instead a small air gap was left. The two electronic circuits described above were
tested. The main results obtained are summarized as follows.

Configuration (3) gave over 10dB increase in TL when the standard “damping” circuit was implemented.
This occurred at the circuit design resonance whether the plate-smart foam system was on resonance or not.
This implied that the RL circuit does not actually “damp” energy in the resistor but actually is an electrical
equivalent of tuned vibration absorber. The RL circuit in conjunction with the piezoelectric device thus
reduced sound transmission by applying a strain to the plate and stiffening it. This was confirmed by
removing the resistance and obtaining the same attenuation (i.e. electrical energy is not dissipated in the
resistance). This is very useful as it implies this type of configuration can operate off the structural system
resonance and at multiple frequencies. When the negative capacitance circuit was tested with configuration
(3) the TL was only increased by 2dB and at only the plate foam system structural resonance. The low
attenuation was though to be due to not accurately measuring the PZT impedance (or capacitance) and new
tests will be carried out with an impedance meter to improve this. The fact that attenuation occurs only at
the structural system resonance also implies that the negative capacitance circuit acts by real electrical
damping or dissipation in the load resistance. These aspects were investigated in detail using the smart
foam FE model in conjunction with electrical circuit models. Configuration (4) gave similar results to (3)
confirming that the attenuation of the plate vibration was not due to the physical contact of the acoustic
foam.

Tests on configurations (1) and (2) were inconclusive. A FRF of the PVDF output showed a resonance
peak corresponding to the smart foam element dimensions. Tests using the conventional electrical circuit
gave no appreciable increase in TL and this can be understood from the above discussions. If this circuit
functions by reactive effects as believed then the PVDF will not be able to “stiffen” the foam globally.
Tests with the negative capacitance circuit gave negligible improvements in TL (of the order of 1 to 2db)
and this was thought to be due to mistuning of the circuit and design and layout of the PDFV elements to
extract maximum vibration energy from the foam.

Figures 5 and Figure 6 show example results. In Figure 5 the blanket system consisted on foam covered on
one or both sides with honeycomb sheet and embedded PVDF in the foam. A feedforward approach is used
to actively minimize the transmitted sound waves. The results show quite impressive broadband
performance. In Figure 6 a similar system is tested except that the active input is a PZT actuator located on
the downstream honeycomb covering sheet. The results are gain impressive.
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Figure 6. Active panel blanket test results.

Transmission loss tests using such a system were also performed in the TL facility at VT. Figure 7 is a
photograph of the concept extended from a 1D system to a 2D panel system. Evident in the photographs are
the honeycomb top covering plates and the active PVDF and PZT piezoelectric elements. TL tests with the
system provided reasonable broadband control similar to that shown in Figures 5 and 6. However this
approach was discontinued for the reasons discussed next.




honeycomb Foam and PVDF

Figure 7. 2D smart blanket construction.

Tests were also performed to check the maximum level of the incident wave that could be controlled by the
embedded PVDF. This was found to be limited by the maximum drive level of the PVDF and PZT
piezoelectric elements. Typical maximum sound pressure levels that could be controlled were
approximately 100-110dB at 150 Hz. While this is significant it is still much less than incident levels that
would be encountered in realistic payload applications. Alternative arrangements thus need to be
investigated and these are discussed in Section 1.3.

Another approach that was studied was the concept of a subsonic skin. It is well known that the sound
radiation occurs only from supersonic wave motion on the vibrating structure. Thus if the structure is
covered with a skin that transforms the supersonic wave motion into subsonic then the sound radiation will
be vastly reduced. Figure 8 shows a schematic of such a concept.

? Sound Radiation
kskin .

Nt N Skin

Beam

Figure 8. Subsonic skin concept.

The approach followed was based upon coupled waveguides. If a skin (or wave guide) can be constructed
so as to only support subsonic motion then it could be used to cover the offending sound radiating structure.
Energy will then leak from the supersonic waves on the base structure (the fairing) into the subsonic motion
via the coupling interface and thus sound radiation should fall. To investigate the potential of this concept
an analytical model was constructed. The model is shown in Figure 9 and consists of a series of coupled
SDOF mass spring elements. Wave motion in the mass spring elements occurs due to the spring that
laterally couples them. A piston is located on the top of each element to create sound radiation. The
parameters of the mass spring skin can be adjusted to ensure that the wave speed is subsonic in the
frequency range of interest.
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Figure 9. Model of subsonic skin.




A mathematical model of the subsonic skin was developed and used to study the behavior of the skin
attached to a beam. Example results are shown in Figures 10 and 11. Both figures results of spatial and
frequency Fourier transforms of the skin normal displacement versus frequency (a dispersion plot) obtained
from the model beam excited by an impulse. Also shown is the acoustic wavenumber as a dark straight
line. Figure 10 gives results for a generic layer and the layer is clearly supersonic (wavenumber for the
layer greater than the acoustic wavenumber) over all its frequency range. Figure 11 presents results for a
tuned layer where the parameters are chosen to ensure that the layer wave is subsonic. It can be seen that
indeed the layer wave is slower than the acoustic wave.

fraquency

Figure 10. Dispersion plot for a generic skin.

Wave Numbers in a Tuned Layer

200
frequency

Figure 11. Dispersion plot for a tuned skin.

While these results showed promise for designing advanced smart blankets for payload noise reduction it
was felt that the implementation would not be practical in 2D and very difficult to construct.

Main conclusions of the preliminary investigations.

1. The conventional RL circuit acts by reactive effects not damping as previously believed by other
researchers. This circuit is thus useful for electronic damping on distributed elastic systems such
as plates etc but not foam systems.

2. A plate-smart foam system gave an increase in sound transmission loss of 10dB with a
conventional damping circuit.




3. The foam-PVDF composites rely on extracting energy by electronic damping thus the electrical
circuit must perform this function. The negative capacitance circuit shows potential for this but the
capacitance of the PVDF must be measured accurately.

4. The smart foam elements have demonstrated potential for efficiently (i.e. light weight, low power
etc) increasing sound transmission loss of structures.

5. However the smart foam elements do not appear to have sufficient control authority for payload
fairing noise control applications.

6. A Finite Element model of the smart foam elements has been developed and proved useful for
investigating system behavior and optimal design.

7. The subsonic skin showed potential for reducing sound transmission. However construction in a

2D arrangement would be extremely difficult.
3.2 Design concept

The preliminary work discussed above showed potential but its practicality was limited by various aspects
and the approaches were discontinued. In order to develop a viable solution a new concept was derived
based upon the systems and knowledge gained in the preliminary investigations. We now discuss this
system, which ultimately proved satisfactory.

Figure 12 shows a schematic of the smart skin positioned over a section of the payload fairing structure.
The smart skin consists of active tiles embedded in acoustic foam (not shown for clarity). The acoustic
foam provides the high frequency passive attenuation while the active tiles provide the low frequency
active control of the transmitted sound. Figure 13 shows a schematic of an individual tile element. The tile
element consists of a lightweight, very stiff panel connected to the payload fairing base structure by active
actuators that consist of a spring-damper with an active force applied in parallel to each mount. Acoustic
foam is located underneath and on top of the tile in order to control high frequency sound transmission and
increase cavity absorption respectively.

Sound transmitied to
payload fairing interior

active tile /’/ x

fairing structure control
forces

Incident
acoustic
wave

Figure 12. Generic smart skin for plf sound transmission control.
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Figure 13. Smart active-passive tile arrangement.




As the tiles are very stiff they do not have flexible response and only have rigid body motion at low
frequencies (well below their fundamental bending resonance). The rigid body motions are shown in Figure
14.

(b)
Figure 14. System rigid body modes (a) heave, (b) pitch.

Since the tiles are rigid then they radiate sound like individual pistons and the sound transmitted to the
fairing interior is directly proportional to the tile normal displacement. Reducing the tiles normal
displacement will thus result in a drop of transmitted sound power to the fairing interior.

The arrangement is a variation of a classic vibration isolation problem [5]. Above the resonance of the tile-
spring/damper system, normal vibrations of the base structure (the payload fairing) will be poorly
transmitted to the tile resulting in a drop of transmitted sound. The passive dynamics of the tile suspension
system thus should result in passive attenuation. In addition acoustic foam is located under and above the
tile to increase the high frequency passive transmission loss. However at the resonance of the tile
suspension system, the tile normal motion is large resulting in an increase in transmitted sound. We
compensate for this increase by locating active forces in parallel with the mounts to actively reduce the tile
normal motion (and thus transmitted sound) near the tile resonance. In addition we design the dynamics so
that the tile resonance is at low frequency where passive attenuations are poor.

Such an arrangement also leads to a very simple active control approach consisting of simple feedback
loops closed around each mount as shown in Figure 14. The feedback control system can be analog and
uncoupled since bending response of the tile is negligible. The control objective would be to reduce the tile
motion at feedback accelerometer sensors, which are located above each mount on the tile. Analysis has
demonstrated that such a control strategy of using suppression of the heave mode of the tile but not the
rocking mode leads to good reduction of radiated sound [6]. Figure 15 shows the radiation efficiency of a
baffled simply supported beam covered with either five or ten active tiles. The results show that the
radiation efficiency of the third beam mode (for example) is significantly reduced below the coincidence
frequency and that rocking motion only becomes significant when the acoustic wavelength is similar to the
tile transverse size.

Radiation Efficiency of beam and tiles: 3rd mode

- Beam
- - 10tiles
— Stiles

Radiation Efficiency

+
10
&l (nondimensional wavenumber)

Figure 15. Radiation efficiency of a simply supported beam vibrating in its 3rd mode and covered
with 5 or 10 tiles. Active control is applied to cancel the heave motion only.




A couple of aspects of the arrangement should be considered. The use of isolators connecting the tiles to
the base structure (the payload fairing) results in good passive isolation above the resonance of the tile-
suspension system. However the tile is also coupled to the normal motion of the fairing by the sound field
in the cavity under the tile. At very low frequencies, below the fundamental cavity resonance, this air mass
is very stiff and motion of the fairing will be directly transmitted to the tile resulting in poor passive
attenuation. There are two solutions to this problem. Firstly the acoustic space can be filled with foam in
order to reduce the acoustic response. Secondly the active forces in parallel with the mounts can
compensate for the sound transmission. Other important aspects are that the complete active-passive smart
blanket should be compact and of the order of the size of conventional treatments. Obviously the treatment
should not be too heavy-we set a target weight of the treatment to be a maximum of 10% of the base
structure. The active system should also be compact and of low complexity. Here the SISO analog
feedback loops are promising since all the sensors and control electronics can be integrated into the smart
blanket close to each mount.

In order to demonstrate the potential of the approach in this report we analytically and experimentally
investigate the performance of a single active tile designed to perform hybrid active/passive attenuation of
sound transmitted through a vibrating panel. The report first considers the construction of the active tile
including compact active mounts. Tests are then performed with the active tiles. The results are then
extrapolated to real application sound levels to investigate whether the proposed active tile has sufficient
control authority for a realistic payload fairing application.

3.3 Construction of the Active Tile

There are two main design aspects of the active tile: the tile material itself and the active mounts. To
achieve a very light surface treatment, which is very stiff at low frequencies, it is necessary to carefully
choose the tile material properties and construction. In the work reported here we used a carbon/fiber
Nomex honeycomb composite sandwich material of 6 cm thickness and of 1.0 kg weight per unit area. The
size of the tile for these tests was chosen to be 30 cm by 38 cm. The first bending resonance of the free
panel was estimated to be 330 Hz, which is well out of the frequency range of interest.

The second important aspect was to design and implement the active-passive isolation mounts. As stated
before it is necessary that the active mounts have a passive spring isolation arrangement with active forces
in parallel. The active mounts have to be compact and should have enough control authority for the real
application. For this application we chose to use THUNDER elements as the active actuators. The
THUNDER actuator is composed of three thin layers of a steel base layer, a piezoceramic patch and an
aluminum top cover sheet bonded together under temperature. On cooling, due to differential thermal
expansion, the THUNDER element consists of a curved unimorph transducer as shown in Figure 16. Due
to the unimorph and curved nature of the THUNDER element, when a voltage is applied, the element will
deform and generate a force in the direction normal to its curvature as shown in Figure 16.
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Figure 16. Active-passive isolation mount using a THUNDER piezoelectric element.

In the current active tile application the THUNDER element is glued along its straight edges to very thin
aluminum strips whose bottom edges are attached to thin balsa wood base as illustrated in Figure 16. The
complete arrangement is then connected between the tile and the base structure as shown in Figure 17.

balsa THUNDER

tile mount motion
mount element

aluminum
support strips

control signal

Figure 17. Schematic of installation of active-passive isolation mount with tile.

This arrangement allows for the tile to be elastically suspended by the natural stiffness of the THUNDER
elements and attached thin aluminum side strips. In addition, applying a voltage to the element will allow
the active mount to apply active forces in between the tile and the base structure at each mount point as
shown in Figure 17. Figure 18 shows a picture of a single active mount mounted to a Nomex tile used in
the tests to be discussed next.
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Figure 18. Active tile used for SDOF isolation tests.

3.4 Experimental Tests

Example results of a preliminary experimental investigation of the performance of the approach are now
presented. Two main tests were performed. Firstly the active tile was directly mounted on top of a large
shaker to directly measure its passive and active vibration isolation performance for a single actuator/
SDOF arrangement. Secondly, an acoustic transmission loss experiment using a single tile suspended by
two active mounts and positioned on an aluminum panel was carried out. For both of these tests the active
tile was investigated without being embedded in acoustic foam. Future tests will include acoustic foam on
top of the tile surface and in the acoustic cavity under the tile.

3.5 Vibration isolation tests

The first experimental set of tests investigated the passive and active vibration isolation characteristics of a
single active tile. A smart tile of dimensions 25 cm by 25m was located on top of a 25 Ib electrodynamic
vibration shaker as shown in Figure 19. The arrangement simulates a point SDOF excitation of the active
tile system. The test set up is of reduced complexity since it does not take into account effects such as
mechanical coupling of adjacent tiles, acoustic radiation and gaps between adjacent tiles. However it does
allow the investigation of the passive and active isolation performance of the THUNDER active mount.

Figure 19. Experimental setup for isolation tests.

The shaker was driven with band-limited white noise from 0 to 250Hz. The normal acceleration of the
shaker drive point and the tile were measured to compute the transmissibility (inverse of vibration
isolation) of the tile-mount system. The active control approach used for these tests was the feedfoward
LMS algorithm [5]. Used to minimize the signal from the accelerometer located on the tile.
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Figure 20 shows the acceleration response of the shaker drive point and the active tile with and without
active control applied. A resonance of the suspension system is observed near 20 Hz. Above the resonance
the tile suspension system provides good passive reduction of transmitted vibration. At the resonance the
transmitted vibration is passively amplified as expected. When the active control is turned on the vibration
amplification at resonance is eliminated and active-passive attenuations of transmitted vibrations of the
order of 20dB over the design bandwidth of 0 to 250 Hz are observed.

Acceleration frequency responses of base and receiver

10 : T T T
—— receiver: control off
- - - base
ol —— receiver: control on | |
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Frequency

Figure 20. Experimentally measured base and tile acceleration
without (passive) and with active control (active-passive).

The transmissibility of the system calculated from these results is presented in Figure 21 with and without
active control. Very good vibration control is observed for the active-passive tile system.

Acceleration Transmissibility

20 T T . T
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154 —— control on |
10
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Figure 21. Experimentally measured transmissibility of active tile,
without control (faint line) and with control (bold line).

These initial tests confirm the potential of the active-passive tile isolation approach. If the interior surface
of the fairing could be coated with a skin of such tiles then the transmitted sound would be significantly
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reduced over a wide band of low frequencies since it is directly coupled tot he vibration. We now evaluate
the acoustic transmission characteristics of the active tile.

3.6 Acoustic transmission loss tests

In these set of tests the use of the active tile to control transmission of sound through a test panel was
investigated. In this case a Nomex panel of size 30 cm by 38 cm in conjunction with two active
THUNDER mounts was used. The test tile is shown in Figure 22.

THUNDER isolator mounts

flexible

/ seal

carbon fiber/Nomex panel e

Figure 22. Active tile prototype for sound transmission control tests.

A schematic of the experimental test set up is shown in Figure 23. In these tests a 1.6 mm thick, 30cm by
38 cm aluminum panel was clamped in the test hole of the VAL transmission loss test facility. The single
tile shown in Figure 22 was located on the aluminum baseline test plate. The gaps at the edge of the panel
were sealed with a flexible foam gasket. A loudspeaker located inside the reverberant source room was
used to excite the panel with broadband noise. The transmitted sound level was measured in the anechoic
receiving chamber of the transmission loss test facility using 9 microphones located on a hemispherical
array surrounding the plate. The microphones were in the far field of the plate radiation. The active control
paradigm for these tests was again the feedforward LMS algorithm used to actively minimize the tile
acceleration at two points above each mount location by driving the two THUNDER active mounts with
independent control signals. Figure 24 shows a picture of the active tile mounted on the base panel.
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Figure 23. Schematic of test arrangement for sound transmission control.

Figure 24. Photograph of active tile mounted on base plate in wall of transmission loss
test facility. Note also microphone hemisphere for estimating radiated sound power.

Figure 25 presents the relative acceleration of the baseline plate structure and the acceleration of the active
tile without control (passive case) and with control (active case). Note that the panel-suspension system
exhibits a resonance near 120Hz. and provides good passive attenuation of transmitted vibration above the
resonance. The application of the control leads to significant reductions near the panel resonance and even

at higher frequencies.

15




10

RMS Acceleration

Acceleration [m/s2]

—— Baseline plate
- - - Passive Tile
- Active Tile

100

150 200 250
Frequency [Hz]

Figure 25. Acceleration of base plate and active tile without and with control.

We now turn to the transmitted acoustic field. Figure 26 presents the measured sound power transmitted
into the anechoic receiving chamber (the transmitted field) calculated from the microphones on the
hemispherical array for the various test cases. The results again show high active-passive reductions of the
transmitted sound levels over the complete test frequency band. Finally Figure 27 presents the
transmission loss of the baseline panel with the active tile in place calculated from the ratio of the
transmitted pressures to the incident acoustic pressure in the source room. Again it is evident that the active
tile leads to large increases in transmission loss over many parts of the bandwidth and, most significantly,
always increases the magnitudes of the low transmission loss regions of the bare panel. Note that the
attenuations are less than that shown by the panel vibrations and this is most likely due to acoustic leakage
through the seals at the edges of the tile.
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Figure 26. Transmitted power of base plate, base plate covered with active
tile, no control (passive) and base plate covered with active tile, control on (active-passive).
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Figure 27. Calculated transmission losses corresponding the tests of Figure 26.

3.7 Theoretical Analysis

In this section we describe preliminary work to model the active tile system. The theoretical model consists
of a clamped aluminum plate mounted in an infinite baffle. A very stiff plate with free boundary conditions
is connected to the base plate by spring —~damper isolators systems. Active forces are located in parallel to
the isolator (mounts). The base panel is excited by an incident plane wave and the tile radiates into free
space. The stiff plate is assumed to be acoustically sealed at the edges. The system is shown schematically
in Figure 28. The model should allow further investigation and parameter optimization of the active tile
approach on validation with the experimental results.

incoming
plane
wave

radiating

- lats
receiving plate

plate

infinite baffle

\ 

Figure 28. Double panel and incident acoustic wave coordinate systems for analytical model.
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In order to develop the model, it is necessary to derive the general equations of motion of a double panel
system coupled by the isolators and driven by an acoustic field. The isolators are approximated point
spring/dampers connecting both plates with a parallel active force. The dynamics of the contained acoustic
field between the base structure and the tile is modeled using the rigid walled cavity modes.

The equations of motion of the incident (subscript 1) and radiating (subscript 2) plates connected by a set of
spring-dampers can be written as:

02w ow  owy L
DV +m =k 4 (-2 Y 5= x)8 (v - 3i)

ot or oo

J 1 M
+k(w =wp) D, D 8(x=x;)5(y = yi) = fe — P(%,9,0)

j=li=1

o’w ow, ow !
D,Viw, +my—2+co(—2-—1)D > 8(x-x,)5(y-y,)

o o o el o

+h(w, —w)Y. D 6(x—x,)6(y - ;) = p(x,y,L,) + ,

j=1 i=l

Where:

w; and w, are the normal displacements of plates 1 and 2
D; and D, are the bending stiffness of plates 1 and 2

¢ is the damping coefficient of the isolators

k is the stiffness of the isolators

x; and y; are the isolators’ coordinates

[ is the external disturbance

£ are the control forces

p is the pressure field between the plates

The sound field in the cavity between the two plates can be written in terms of the velocity potential of the
acoustic field as:

N
A, (@) -0*)a, =Y C,.d, 3)

Where a, are the coefficients of the velocity potential expanded in terms of the acoustic modes of the cavity

\P .

n

N
9p=>Ya,%,
n=1

and A, is the nth acoustic modal mass.

The acoustic velocity potential is related to the pressure by Bernoulli’s equation:

p=-p@

18




Assuming that both plates have the same modes shapes ®@,, and expressing the plate displacements as a
modal expansion, one can substitute this modal expansion back into the equations above. Making use of the
orthogonality conditions and the Dirac delta sifting properties to get:

Allmp[a)2 + (lwc + k)Xnm (xj9yi) _a)lzm ]QIm —[(la)c + k)Xnm ]q2m = Fe —P(x9y30) (4)
M, [0 +(wc+K)X,, (x,,y,) - ©;,14,, —[(oc+k)X,,]q,, = F, + P(x,y,L,) (5

Where:

F,= [@,f.ds
N

F,= [, f.ds
N

P =’P{{Z.dnc,,m(x,y,2)

/I M N
ZZ(DM(xj’yi)ch(xj,yi)

=1

m=1 n=1

M- -
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1 i

~.
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Using the above analysis we can predict the sound transmitted through the base plate, the base plate
covered with a passive tile and the base plate covered with an active tile. At this stage we have not included
the control analysis so we limit our results to the passive configurations. Figure 29 shows the predicted
sound power transmitted through a single aluminum clamped panel of the same thickness as the experiment
discussed above. The panel is excited by an acoustic plane wave incident at 45 deg as in the experiment.
Good agreement between theory and experiment is evident with the model accurately predicting the system
resonances and radiated power levels across the 50-250 Hz design bandwidth. High sound power
transmission is evident at the resonance frequency of the base structure fundamental mode near 120Hz.

Transmitted sound power
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Figure 29. Predicted versus measured power transmitted through a clamped
aluminum plate in a baffle.

Figure 30 now shows theoretical and experimental results when the active-passive tile is located on the
base panel. In this case there is no control, so the effects are entirely due to the passive isolator dynamics of
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the tile and its suspension system. Good agreement between theory and experiment is again evident below
200Hz. At higher frequencies the results diverge somewhat and this is most likely due to; (1) sound
transmitted through the edge gaps of the tile, (2) a flexible mode of the THUNDER mount at 330Hz and

(3) rocking motion of the tile (considered to be only normal motion in the model).
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Figure 30. Predicted versus measured power transmitted through a double panel system consisting of a
clamped plate covered by a active tile isolation system (no control).

Comparing Figures 29 and 30 it is evident that the tile system leads to good passive isolation of the
transmitted sound below 250Hz particularly at the base panel fundamental resonances. There is some
increase in transmitted sound power at higher frequencies but this likely to be controlled by the later
insertion of the acoustic foam elements. Application of active control will also lead to improved reduction
in radiated sound power across the complete design bandwidth.

3.8 Practical Aspects of the Use of Active Tiles in a Real Payload Fairing Application

The preliminary tests summarized above have demonstrated the potential for the active tiles for controlling
sound transmitted into payload fairing structures. In order for such an approach be of practical use in the
real application, various implementation and performance parameters need to be estimated

3.9 Weight and thickness of the treatment

Since the active skin approach employed here works by decoupling the sound field from the vibrating
fairing it is necessary to cover all of the inside fairing surface or a major part of it. For the active tile
configuration considered here an added weight estimate can be calculated as: the carbon fiber/Nomex tile
was 6mm thick and has a surface density of 1.0 kg/m’. The THUNDER active mounts each weighed 20
grams. Two independent analog feedback control and power circuits would be needed at a weight of 8
grams each. Considering a launch vehicle payload fairing that has a typical surface density of 9.0 kg/m?, the
added weight of the treatment is calculated to be approximately 14 %. This value is slightly larger than the
target 5-10% added treatment weight but should be realizable by optimizing the tile material and active
mounts. Note that the acoustic foam is not included in the calculation on the assumption that the active tile
will be embedded in the existing foam treatment.

The active tile treatment proposed here is of S5cm thickness, which compares well with the 7.5cm thickness
of present acoustic foam treatments in fairings.
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3.10Maximum controllable sound levels with the active tile

Another very important aspect is the maximum sound level that the active tile can control. This value will
be limited by the maximum voltage that can be applied across the THUNDER piezoelectric elements. We
base the estimates on the results of the acoustic transmission loss tests of the active tile. These experiments
were performed with an incident acoustic wave of total sound pressure level of 128dB over a 50- 250Hz
bandwidth. For this level of incident excitation it was necessary to apply around 80 V rms to each active
mount in order to reduce the transmitted sound. Since the maximum applicable voltage to the THUNDER
elements is around 215 V rms, it is possible to calculate by extrapolation that the maximum incident sound
pressure that could be controlled is approximately 137dB. This value is close to that of typical launch
vehicle excitation loads [1]. Note however, that this result is dependent on the base structure dynamics,
which in this case is an aluminum panel not a real fairing.

We thus also estimate the maximum controllable vibration levels and see how they compare to the
vibration of an actual fairing structure. For the experiments discussed above the base panel vibration was
measured to be 2.7g rms over the 0 to 200 Hz bandwidth without the tile treatment in place. Locating the
active-passive tile treatment leads to both passive attenuation and further active reduction of the vibration
when the control is turned on. The required control voltage is again 80 V rms. Using extrapolation to the
maximum allowable voltage we can calculate that the active-passive tile will be able to control vibrations
of the untreated base structure 7.2 g rms. This compares well with typical observed normal vibration levels
of real fairings of approximately 7.5 g rms [7].

3.11Conclusion

An experimental and preliminary analytical investigation of the use of smart acoustic tiles to control sound
transmission into fairing like structures has been carried out. The experiments have demonstrated the high
potential of the active tile approach to reduce realistic payload noise in a relatively lightweight, conformal
installation. The analytical model has demonstrated good agreement between predictions and experiments
and will be useful for efficient investigations of system parameter changes, system configuration
improvements and optimal design. Embedding the active tiles into acoustic foam will allow the final
development of a “smart acoustic blanket”.

3.12Future Work

The above investigations have demonstrated the potential of the smart tile approach. However there
remains much work to be carried out to develop, implement and test necessary components. These are;

¢ Embed the active tile in acoustic foam and test.

e Develop analog SISO feedback controllers, implement and test.

e Investigate and improve performance limitation due to tile edge air gaps

e  Apply multiple tiles to a panel section of a Delta V fairing in TL facility.

e  Test multiple tiles on selected panel radiating into a rigid enclosure.

e  Extend model to include both SISO feedback and MIMO feedforward control.
e  Extend the model to multiple tiles.

e  Optimal design tile treatment.

e Apply tile treatment to a real payload fairing or full-scale cylinder model of fairing.
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